The San Andreas Fault.
The San Andreas Fault is a continental transform fault that runs a length of roughly 810 miles (1,300 km) through California in the United States. The fault's motion is right-lateral strike-slip (horizontal motion). It forms the tectonic boundary between the Pacific Plate and the North American Plate.

The fault was first identified in Northern California by UC Berkeley geology professor Andrew Lawson in 1895 and named by him after a small lake which lies in a linear valley formed by the fault just south of San Francisco, the Laguna de San Andreas. After the 1906 San Francisco Earthquake, Lawson also discovered that the San Andreas Fault stretched southward into Southern California. Large-scale (hundreds of miles) lateral movement along the fault was first proposed in a 1953 paper by geologists Mason Hill and Thomas Dibblee.


The San Andreas Fault can be divided into three segments.

Southern segment.

The southern segment (known as the Mojave segment) begins near Bombay Beach on the Eastern edge of the Salton Sea at the northern terminus of the East Pacific Rise and runs northward before it begins a slow bend to the west where it meets the San Bernardino Mountains. It runs along the southern base of the San Bernardino Mountains, crosses through the Cajon Pass and continues to run northwest along the northern base of the San Gabriel Mountains. These mountains are a result of movement along the San Andreas Fault and are commonly called the Transverse Range. In Palmdale, a portion of the fault is easily examined as a roadcut for the Antelope Valley Freeway runs directly through it. Box Canyon, just southeast of Palm Springs, is a dramatic section.

After crossing through Frazier Park, the fault begins to bend northward. This area is referred to as the "Big Bend" and is thought to be where the fault locks up in Southern California as the plates try to move past each other. This section of the fault has an earthquake-recurrence interval of roughly 140–160 years. Northwest of Frazier Park, the fault runs through the Carrizo Plain, a long, treeless plain within which much of the fault is plainly visible. The Elkhorn Scarp defines the fault trace along much of its length within the plain.

Research has shown that the Southern segment, which stretches from Parkfield in Monterey County, California all the way down to the Salton Sea, is now capable of a Richter scale 8.1 earthquake. An earthquake of that size on the Southern segment (which, at its closest, is 40 miles away from Los Angeles) would kill thousands of people in Los Angeles, San Bernandino, Riverside, and other areas, and cause hundreds of billions of dollars in property and economic damage.


Central segment.
The central segment of the San Andreas fault runs in a northwestern direction from Parkfield to Hollister. While the southern section of the fault and the parts through Parkfield experience earthquakes, the rest of the central section of the fault exhibits a phenomenon called aseismic creep, where the fault slips slowly without causing earthquakes.

Northern segment.
The northern segment of the fault runs from Hollister, through the Santa Cruz Mountains, epicenter of the 1989 Loma Prieta earthquake, then on up the San Francisco Peninsula, where it was first identified by Professor Lawson in 1895, then offshore at Pacifica at Mussel Rock. This is the approximate location of the epicenter of the 1906 San Francisco earthquake. The fault returns onshore at Bolinas Lagoon just north of Stinson Beach in Marin County. It returns underwater through the linear trough of Tomales Bay which separates the Point Reyes Peninsula from the mainland, runs just east of the Bodega Heads through Bodega Bay and back underwater, returning onshore at Fort Ross. (In this region around the San Francisco Bay Area several significant "sister faults" run more-or-less parallel, and each of these can create significantly destructive earthquakes.) From Fort Ross the northern segment continues overland, forming in part a linear valley through which the Gualala River flows. It goes back offshore at Point Arena. After that, it runs underwater along the coast until it nears Cape Mendocino, where it begins to bend to the west, terminating at the Mendocino Triple Junction.

New Madrid Seismic Zone.
The New Madrid Seismic Zone, sometimes called the New Madrid Fault Line, is a major seismic zone and a prolific source of intraplate earthquakes (earthquakes within a tectonic plate) in the southern and midwestern United States, stretching to the southwest from New Madrid, Missouri.

The New Madrid fault system was responsible for the 1811–1812 New Madrid earthquakes and may have the potential to produce large earthquakes in the future. Since 1812 frequent smaller earthquakes were recorded in the area.

Earthquakes that occur in the New Madrid Seismic Zone potentially threaten parts of seven American states: Illinois, Indiana, Missouri, Arkansas, Kentucky, Tennessee and Mississippi.




Golden triangle.
Southeast Asia (or Southeastern Asia) is a subregion of Asia, consisting of the countries that are geographically south of China, east of India and north of Australia. The region lies on the intersection of geological plates, with heavy seismic and volcanic activity.

Southeast Asia consists of two geographic regions: Mainland Southeast Asia, also known as Indochina, comprises Cambodia, Laos, Burma (Myanmar), Thailand, Vietnam and Peninsular Malaysia, and Maritime Southeast Asia, which is analogous to the Malay Archipelago, comprises Brunei, East Malaysia, East Timor, Indonesia, the Philippines, and Singapore. Geographically Hong Kong,Macau, and Taiwan are sometimes grouped in the Southeast Asia subregion, although politically they are rarely grouped as such. The same is true for the Andaman and Nicobar Islands of India, and occasionally regions of the Seven Sister States such as Manipur.

Austronesian peoples predominate in this region. The major religions are Buddhism and Islam, followed by Christianity. However, a wide variety of religions are found throughout the region, including many Hindu and animist-influenced practices.


Mid-Atlantic Ridge
The ridge was central in the breakup of Pangaea that began some 180 million years ago.
The Mid-Atlantic Ridge (MAR) is a mid-ocean ridge, a divergent tectonic plate boundary located along the floor of the Atlantic Ocean, and part of the longest mountain range in the world. It separates the Eurasian Plate and North American Plate in the North Atlantic, and the African Plate from the South American Plate in the South Atlantic. The Ridge extends from a junction with the Gakkel Ridge (Mid-Arctic Ridge) northeast of Greenland southward to the Bouvet Triple Junction in the South Atlantic. Although the Mid-Atlantic Ridge is mostly an underwater feature, portions of it have enough elevation to extend above sea level. The section of the ridge which includes the island of Iceland is also known as the Reykjanes Ridge. The average spreading rate for the ridge is about 2.5 cm per year.
The Mid-Atlantic Ridge includes a deep rift valley which runs along the axis of the ridge along nearly its entire length. This rift marks the actual boundary between adjacent tectonic plates, where magma from the mantle reaches the seafloor, erupting as lava and producing new crustal material for the plates.
Near the equator, the Mid-Atlantic Ridge is divided into the North Atlantic Ridge and the South Atlantic Ridge by the Romanche Trench, a narrow submarine trench with a maximum depth of 7,758 m (25,453 ft), one of the deepest locations of the Atlantic Ocean. This trench, however, is not regarded as the boundary between the North and South American Plates, nor the Eurasian and African Plates.

 Alpide belt.

The Alps form a part of a Tertiary orogenic belt of mountain chains, called the Alpide belt, that stretches through southern Europe and Asia from the Atlantic all the way to the Himalayas. This belt of mountain chains was formed during the Alpine orogeny. A gap in these mountain chains in central Europe separates the Alps from the Carpathians to the east. Orogeny took place continuously and tectonic subsidence has produced the gaps in between.

The Alps arose as a result of the collision of the African and European tectonic plates, in which the Alpine Tethys, which was formerly in between these continents, disappeared. Enormous stress was exerted on sediments of the Alpine Tethys basin and its Mesozoic and early Cenozoic strata were pushed against the stable Eurasian landmass by the northward-moving African landmass. Most of this occurred during the Oligocene and Miocene epochs. The pressure formed great recumbent folds, or nappes, that rose out of what had become the Alpine Tethys and pushed northward, often breaking and sliding one over the other to form gigantic thrust faults. Crystalline basement rocks, which are exposed in the higher central regions, are the rocks forming Mont Blanc, the Matterhorn, and high peaks in the Pennine Alps and Hohe Tauern.

The formation of the Mediterranean Sea is a more recent development and does not mark the northern shore of the African landmass.




Queen Charlotte Fault.
The Queen Charlotte Fault is an active transform fault, located between the North American Plate and the Pacific Plate, Canada's equivalent of the San Andreas Fault. The Queen Charlotte Fault forms a triple junction on its south with the Cascadia subduction zone and the Explorer Ridge (the Queen Charlotte Triple Junction). The fault is named for the Queen Charlotte Islands which lie just north of the triple junction. The Queen Charlotte Fault continues northward along the Alaskan coast where it is called the Fairweather Fault. The two segments are collectively called the Queen Charlotte-Fairweather Fault System.

The fault has been the focus of large earthquakes. The study of the Queen Charlotte Fault affords further important information applicable to other similar faults throughout the world.

Three large earthquakes have occurred along the Queen Charlotte Fault during the 20th century: a magnitude 7 event in 1929, a magnitude 8.1 occurred in 1949 (Canada's largest recorded earthquake since the 1700 Cascadia earthquake) and a magnitude 7.4 in 1970. The P nodal focal mechanism for the 1949 earthquake indicates virtually pure strike-slip movement with a northwest striking nodal plane corresponding to the strike of the fault, whilst the 1970 earthquake shows a similar strike-slip movement with a small but significant thrust component, consistent with relative plate motion. The 1949 earthquake was larger than the 1906 San Francisco earthquake, causing nearly a 500 kilometer long segment of the Queen Charlotte Fault to break..
A pair of 6.5 magnitude quakes occurred on January 5, 2008 near the southern triple junction, although they do not appear to have occurred directly on the Queen Charlotte Fault.

Ring of Fire.

The Pacific Ring of Fire (or sometimes just the Ring of Fire) is an area where large numbers of earthquakes and volcanic eruptions occur in the basin of the Pacific Ocean. In a 40,000 km (25,000 mi) horseshoe shape, it is associated with a nearly continuous series of oceanic trenches, volcanic arcs, and volcanic belts and/or plate movements. The Ring of Fire has 452 volcanoes and is home to over 75% of the world's active and dormant volcanoes. It is sometimes called the circum-Pacific belt or the circum-Pacific seismic belt.
Eruption of Mount St. Helens on July 22, 1980.

About 90% of the world's earthquakes and 80% of the world's largest earthquakes occur along the Ring of Fire. The next most seismic region (5–6% of earthquakes and 17% of the world's largest earthquakes) is the Alpide belt, which extends from Java to Sumatra through the Himalayas, the Mediterranean, and out into the Atlantic. The Mid-Atlantic Ridge is the third most prominent earthquake belt.

The Ring of Fire is a direct result of plate tectonics and the movement and collisions of crustal plates. The eastern section of the ring is the result of the Nazca Plate and the Cocos Plate being subducted beneath the westward moving South American Plate. The Cocos Plate is being subducted beneath the Caribbean Plate, in Central America. A portion of the Pacific Plate along with the small Juan de Fuca Plate are being subducted beneath the North American Plate. Along the northern portion the northwestward moving Pacific plate is being subducted beneath the Aleutian Islands arc. Further west the Pacific plate is being subducted along the Kamchatka Peninsula arcs on south past Japan. The southern portion is more complex with a number of smaller tectonic plates in collision with the Pacific plate from the Mariana Islands, the Philippines, Bougainville, Tonga, and New Zealand; this portion excludes Australia, since it lies in the center of its tectonic plate. Indonesia lies between the Ring of Fire along the northeastern islands adjacent to and including New Guinea and the Alpide belt along the south and west from Sumatra, Java, Bali, Flores, and Timor. The famous and very active San Andreas Fault zone of California is a transform fault which offsets a portion of the East Pacific Rise under southwestern United States and Mexico. The motion of the fault generates numerous small earthquakes, at multiple times a day, most of which are too small to be felt. The active Queen Charlotte Fault on the west coast of the Queen Charlotte Islands, British Columbia, Canada, has generated three large earthquakes during the 20th century: a magnitude 7 event in 1929, a magnitude 8.1 occurred in 1949 (Canada's largest recorded earthquake) and a magnitude 7.4 in 1970.

Total Pageviews

About this blog

Powered by Blogger.

Popular Posts

Followers